
Faster Attacks on Elliptic Curve Cryptosystems

Michael J. Wiener & Robert J. Zuccherato

Entrust Technologies

750 Heron Road
Ottawa, Ontario
Canada K1V 1A7

April 8, 1998

Abstract

The previously best attack known on elliptic curve cryptosystems used in

practice was the parallel collision search based on Pollard's �-method. The

complexity of this attack is the square root of the prime order of the generating

point used. For arbitrary curves, typically de�ned over GF (p) or GF (2m), the

attack time can be reduced by a factor or
p
2, a small improvement. For sub�eld

curves, those de�ned overGF (2ed) with coe�cients de�ning the curve restricted

to GF (2e), the attack time can be reduced by a factor of
p
2d. In particular

for curves over GF (2m) with coe�cients in GF (2), called anomalous binary

curves or Koblitz curves, the attack time can be reduced by a factor of
p
2m.

These curves have structure which allows faster cryptosystem computations.

Unfortunately, this structure also helps the attacker. In an example, the time

required to compute an elliptic curve logarithm on an anomalous binary curve

over GF (2163) is reduced from 281 to 277 elliptic curve operations.

1 Introduction

Public-key cryptography based on elliptic curves over �nite �elds was proposed by

Miller [7] and Koblitz [5] in 1985. Elliptic curves over �nite �elds have been used to

implement the Di�e-Hellman key passing scheme [2, 4] and also the elliptic curve

variant of the Digital Signature Algorithm [1, 8]. The security of these cryptosystems

relies on the di�culty of solving the elliptic curve discrete logarithm problem. If P

is a point with order n on an elliptic curve, and Q is some other point on the same

curve, then the elliptic curve discrete logarithm problem is to determine an l such

that Q = lP and 0 � l � n � 1 if such an l exists. If this problem can be solved

e�ciently, then elliptic curve based cryptosystems can be broken e�ciently.

The best attack known on the elliptic curve discrete logarithm problem is par-

allel collision search [13] based on Pollard's � algorithm [9] which has running time

proportional to the square root of the largest prime factor dividing the curve order.

This method works for any cyclic group and does not make use of any additional

structure present in elliptic curve groups. We show how this method can be im-

proved for any elliptic curve logarithm computation by exploiting the fact that the

negative of a point can be computed very rapidly.

Certain classes of elliptic curves have been proposed for use in cryptography

because of their ability to provide e�ciencies in implementation. Among these have
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been sub�eld curves and anomalous binary or Koblitz curves [6, 11]. Using the

Frobenius endomorphism, we show that these curves also allow a further speed-up

for the parallel collision search algorithm and therefore provide less security than

was originally thought. This is the �rst time that the extra structure provided by

these curves has actually been used to attack the cryptosystems upon which they are

based. Independant work in this area has also been performed by Robert Gallant,

Robert Lambert and Scott Vanstone.

2 Background

This section will provide the necessary background material on various properties

of elliptic curves and will also describe the parallel collision search method for com-

puting discrete logarithms.

2.1 Elliptic Curves Over GF (p)

Let GF (p) be a �nite �eld of characteristic p 6= 2; 3, and let a; b 2 GF (p) satisfy the
inequality 4a3 + 27b2 6= 0. An elliptic curve, E(a;b)(GF (p)), is de�ned as the set of

points (x; y) 2 GF (p)�GF (p) which satisfy the equation

y2 = x3 + ax+ b;

together with a special point, O, called the point at in�nity. These points form an

abelian group under a well-de�ned addition operation which we now describe.

Let E(a;b)(GF (p)) be an elliptic curve and let P andQ be two points onE(a;b)(GF (p)).

If P = O, then �P = O and P+Q = Q+P = Q. Let P = (x1; y1) and Q = (x2; y2).

Then �P = (x1;�y1) and P + (�P ) = O. If Q 6= �P then P +Q = (x3; y3) where

x3 = �2 � x1 � x2

y3 = �(x1 � x3)� y1;

and

� =

8
>>>><
>>>>:

y2 � y1

x2 � x1
if P 6= Q

3x21 + a

2y1
if P = Q.

2.2 Elliptic Curves Over GF (2m)

We now consider non-supersingular elliptic curves de�ned over �elds of characteristic

2. Let GF (2m) be such a �eld for some m � 1. Then a non-supersingular elliptic

curve is de�ned to be the set of solutions (x; y) 2 GF (2m)�GF (2m) to the equation

y2 + xy = x3 + ax2 + b

where a; b 2 GF (2m) and b 6= 0, together with the point on the curve at in�nity, O.
We denote this elliptic curve by E(a;b)(GF (2

m)) or (when the context is understood)

E.

The points on an elliptic curve form an abelian group under a well de�ned group

operation. The identity of the group operation is the point O. For P = (x1; y1) a
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point on the curve, we de�ne �P to be (x1; y1 + x1), so P+(-P)=(-P)+P=O. Now

suppose P and Q are not O, and P 6= �Q. Let P be as above and Q = (x2; y2),

then P +Q = (x3; y3), where

x3 = �2 + �+ x1 + x2 + a

y3 = �(x1 + x3) + x3 + y1;

and

� =

8
>>>><
>>>>:

y2 + y1

x2 + x1
if P 6= Q

x21 + y

x1
if P = Q.

2.3 Anomalous Binary and Sub�eld Curves

Anomalous binary curves (also known as Koblitz curves) are elliptic curves over

GF (2n) that have coe�cients a and b either 0 or 1. Since it is required that b 6= 0,

they must be de�ned by either the equation

y2 + xy = x3 + 1

or the equation

y2 + xy = x3 + x2 + 1:

Since these curves allow very e�cient implementations of certain elliptic curve cryp-

tosystems, they been particularly attractive to implementors of these schemes [6, 11].

Anomalous binary curves are just a special case of sub�eld curves which have also

been proposed for use in elliptic curve cryptography because they also give e�cient

implementations.

If m = ed for e; d 2 ZZ>0, then GF (2e) � GF (2m). If a and b are actually

elements of GF (2e), then we say that E is a sub�eld curve. Notice in this case that

E(a;b)(GF (2
e)) � E(a;b)(GF (2

m)). Using underlying �elds of this type provide very

e�cient implementations [3, 10].

If e is small, so that the number of points in E(a;b)(GF (2
e)) can be easily counted,

there is an easy way to determine the number of points in E(a;b)(GF (2
m)). Denote

by #E the number of points in E. Then it is well known that #E(a;b)(GF (2
e)) =

2e + 1 � t for some t � 2
p
2e. The value t is known as the trace of the curve. If �

and � are the two roots of the equation X2� tX +2e = 0, then #E(a;b)(GF (2
m)) =

2m + 1� �d � �d. This is known as Weil's Theorem.

2.4 The Frobenius Endomorphism

An interesting property of anomalous binary curves is that if P = (x; y) is a point

on the curve, then so is (x2; y2). In fact (x2; y2) = �P for some constant �. We can

see this in the general case of sub�eld curves using the Frobenius endomorphism.

The Frobenius endomorphism is the function  that takes x to x2
e

for all x 2
GF (2m). Since we are working in a �eld of characteristic 2, notice that  (r(x)) =

r( (x)) for all x 2 GF (2m) and any rational function r with coe�cients in GF (2e).

If P = (x; y) is a point on the sub�eld curve E, de�ne  (P ) = ( (x);  (y)). Also

de�ne  (O) = O. It can be shown from the curve's de�ning equation and the fact
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that (a+ b)2
e

= a2
e

+ b2
e

for all a; b 2 GF (2e) that if P 2 E then  (P ) 2 E. Thus
if E is a sub�eld curve and P;Q 2 E, then  (P +Q) =  (P ) +  (Q).

Now, consider a point P 2 E where E is a sub�eld curve and P has prime order

p with p2 6 j#E. By the above remarks we have p (P ) =  (pP ) =  (O) = O. Hence
 (P ) must also be a point of order P . Since  (P ) 2 E, we must have  (P ) = �P for

some � 2 ZZ, 1 � � � p�1. The value � is constant among all points in the subgroup

generated by P and is known as the eigenvalue of the Frobenius endomorphism.

It is known that for any point P 2 E, the Frobenius endomorphism satis�es

 2(P )� t (P ) + 2eP = O

where t is the trace as de�ned in Section 2.3. Therefore, it can also be shown that

� is one of the roots of the quadratic congruence

X2 � tX + 2e � 0 (mod p):

Hence, � can be e�ciently computed.

2.5 Parallel Collision Search

Given a point Q on an elliptic curve which is in a subgroup of order n generated by

P , we seek l such that Q = lP . Pollard's � method [9] proceeds as follows. Partition

the points on the curve into three roughly equal size sets S1; S2; S3 based on some

simple rule. De�ne an iteration function on a point Z as follows

f(Z) =

8
><
>:

2Z if Z 2 S1
Z + P if Z 2 S2.
Z +Q if Z 2 S3.

Choose A0; B0 2 [1; n � 1] at random and compute the starting point Z0 = A0P +

B0Q. Compute the sequence Z1 = f(Z0); Z2 = f(Z1); : : : keeping track of Ai; Bi

such that Zi = AiP +BiQ. Thus,

(Zi+1; Ai+1; Bi+1) =

8
><
>:

(2Zi; 2Ai; 2Bi) if Z 2 S1
(Zi + P;Ai + 1; Bi) if Z 2 S2.
(Zi +Q;Ai; Bi + 1) if Z 2 S3.

Note that Ai and Bi can be computed modulo n so that they do not grow out of

control. Because the number of points on the curve is �nite, the sequence of points

must begin to repeat. Upon detection that Zi = Zj we have AiP+biQ = AjP+BjQ,

which gives l =
Ai�Aj

Bj�Bi

mod n, unless we are very unlucky and Bi � Bj (mod n).

Actually, Pollard's function is not an optimal choice. In [12] it is recommended

that the points be divided into about 20 sets of equal size S1; : : : ; S20 and that the

iteration function be

f(Z) =

8>>>><
>>>>:

Z + c1P + d1Q if Z 2 S1
Z + c2P + d2Q if Z 2 S2.

...
...

Z + c20P + d20Q if Z 2 S20

(1)

where the ci and di are random integers between 1 and n � 1. The use of this

iteration function gives a running time very close to that expected by theoretical

4



estimates. In order to make computation of the values Ai and Bi more e�cient, we

suggest that constants c11; : : : ; c20 and d1; : : : ; d10 could be zero so that only one of

the values Ai or Bi need to be updated at each stage.

Pollard's � method is inherently serial and cannot be directly parallelized over

several processors e�ciently. Parallel collision search [13] provides a method for

e�cient parallelization. Several processors each create their own starting points

Z0 and iterate until a \distinguished point" Zd is reached. A point is considered

distinguished if it satis�es some easily tested property such as having several leading

zero bits. The triples (Zd; Ad; Bd) are contributed to a memory common to all

processors. When the memory holds two triples containing the same point Zd, then

the logarithm l can be computed as with Pollard's � method.

The expected number of iterations required to �nd the logarithm is
q

�n

2
. The

object of this paper is to reduce this number.

3 Faster Attacks for Arbitrary Curves

Notice that for elliptic curves over both GF (p) and GF (2m), given a point P = (x; y)

on the curve it is trivial to determine its negative. Either �P = (x;�y) (in the

GF (p) case) or �P = (x; x + y) (in the GF (2m) case). Thus, at every stage of the

parallel collision search algorithm, both Zi and �Zi could be easily computed.

We would like to reduce the size of the space that is being searched by parallel

collision search by a factor of 2. We can do this by replacing Zi with �Zi at each
step in a canonical way. A simple way to do this is to choose the one that has

smallest y coordinate when its binary representation is interpreted as an integer.

When performing a parallel collision search, Zi, Ai and Bi should be computed

as normal. However, �Zi should also be computed, and whichever one of Zi and

�Zi has the smallest y coordinate should be taken to be Zi. If Zi has the smallest

y coordinate, then everything progresses as normal. If �Zi has the smallest y coor-

dinate then �Zi should replace Zi, �Ai should replace Ai and �Bi should replace

Bi. Notice that the equation Zi = AiP +BiQ is still maintained.

Thus, the search space for the parallel collision search is reduced to only those

points which have a smaller y coordinate than their negative. Since exactly half of

the points ( 6= O) have this property we have reduced the search space by a factor

of 2. Because the extra computational e�ort in determining which of Zi and �Zi to
accept is negligible, the expected running time of the algorithm will be reduced by

a factor of
p
2. This improvement in attack time is valid for any elliptic curve.

A technicality which a�ects the most obvious application of this technique is the

appearance of trivial 2-cycles. Suppose that Zi and Zi+1 both belong to the same Sj
and that in both cases after f is applied, the negative of the resulting point is used.

This is when Zi+1 = �(Zi + cjP + djQ) (say) and Zi+2 = �(Zi+1 + cjP + djQ) =

Zi. The occurrence of these 2-cycles is reduced by using the iteration function

given in Equation (1) since it gives more choices for the multipliers. It does not

reduce it enough so that e�cient implementations are possible however. To reduce

the occurrence of 2-cycles even further, we can use a look-ahead technique which

proceeds as follows. De�ne fw(Z) � Z + cwP + dwQ. Suppose that Zi 2 Sj. Then
f(Zi) = fj(Zi). Begin by computing R = �fj(Zi), a candidate for Zi+1. If R 62 Sj
then Zi+1 = R. If R 2 Sj , then we treat Zi as though it were in Sj+1 (where j + 1
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is reduced modulo 20), and compute a new candidate R = �fj+1(Zi). If R 62 Sj+1,

then Zi+1 = R, otherwise continue trying j + 2; j + 3; : : :. If all 20 choices fail (a

very low probability event), then just use Zi+1 = �fj(Zi). The idea is to reduce the
probability that two successive points will belong to the same set. Note that Zi+1

still depends solely on Zi, a requirement for parallel collision search to work.

This modi�ed iteration function causes the amount of computation to increase

by an expected factor of approximately 20
19
, a small penalty which can be reduced by

using more than 20 cases. The occurrence of 2-cycles is not completely eliminated,

but is signi�cantly reduced. If necessary, it can be reduced further by using more

than 20 cases or by looking ahead two steps instead of just one. Another way to

deal with 2-cycles is to consider them to be distinguished points.

4 Faster Attacks for Sub�eld Curves

We will now describe an attack on sub�eld curves that again uses parallel collision

search and will reduce the running time by a factor of
p
d when considering curves

over GF (2ed).

Let E(a;b)(GF (2
ed)) be a sub�eld curve with a; b 2 GF (2e) and let P be a point

on the curve such that not both coordinates are from a proper sub�eld of GF (2ed).

In other words P 2 E(a;b)GF (2
ed), but P 62 E(a;b)(GF (2

ef )) for any f , 1 � f � d�1.

Let P have prime order p such that p2 does not divide the order of the curve and let d

be odd. These conditions are not restrictive since most elliptic curve cryptosystems

require the use of points P with prime order very close to the curve order, which

usually implies the above conditions.

By these conditions we get that

 (P ) = �P 6= P;

 2(P ) = �2P 6= P;

...

 d�1(P ) = �d�1P 6= P;

 d(P ) = �dP = P

which implies that djp� 1.

Remember that  (x) = x2
e

. Since we are working over a sub�eld of characteristic

2, squaring is always a very e�cient operation. In particular when a normal basis

representation is used, it is just a cyclic shift of the binary representation of the �eld

element. Thus  (P ) can be computed very e�ciently.

Similar to Section 3, we will use a parallel collision search and compute Zi, Ai

and Bi as usual. We can now also compute the 2d di�erent points on the curve

� j(Zi) for 0 � j � d�1. We would like to choose a \distinguished" or \canonical"

representative from this set. We will �rst consider the d points  j(Zi) and use the

one whose x coordinate's binary representation has smallest value when interpreted

as an integer. We can then choose either that point or its negative depending on

which has smaller y coordinate when interpreted as an integer. This point will now

replace Zi. If we have chosen � j(Zi) to replace Zi, we must then replace Ai with

��jAi and also replace Bi with ��jBi to maintain the relationship Zi = AiP+BiQ.

The powers of �j can be precomputed to obtain further e�ciencies.
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By performing the above operation at every step of the parallel collision search,

we will be reducing the size of our search space by a factor of 2d. Thus, the expected

running time to compute the discrete logarithm will decrease by a factor of
p
2d.

The iteration function f used in the parallel collision search must be chosen

carefully. In particular, notice that if the function is chosen to be a choice between

just 2Z, Z + P and Z +Q (as in the basic parallel collision search algorithm), then

in some situations trivial cycles are likely to occur. Notice that for i < j, Zj can be

written as Zj = p1(�)Zi+p2(�)P +p3(�)Q where p1, p2 and p3 are polynomials in �.

Also notice that these polynomials will have small coe�cients if j� i is not too big.
When using anomalous binary curves, the value � satis�es �2 + �+2 or �2 � �+2.

In either case, � will be likely to be a root of the polynomials in the expression for

Zj , and hence a trivial cycle will be encountered. Experimentation shows that the

modi�ed iteration function described in Section 3 reduces the occurrences of these

trivial cycles su�ciently for practical purposes.

4.1 Anomalous Binary Curves

Now consider the situation created by using anomalous binary curves. IfE(a;b)(GF (2
m))

is such a curve, then a; b 2 f0; 1g, so we are actually using sub�eld curves with e = 1

and d = m.

These curves are particularly well suited to this attack because the size of the

space searched is reduced by a factor of 2m, which reduces the expected running

time by a factor of
p
2m. Thus the attacks on anomalous binary curves using this

method are the most e�cient among all sub�eld curves.

As an example, consider the anomalous binary curve E(1;1)(GF (2
163)). This

curve has been considered particularly attractive for implementing elliptic curve

cryptosystems since its order is twice a prime close to 2162. Many standards recom-

mend that elliptic curve cryptosystems use curves divisible by a prime of at least

160 bits to obtain an expected attack time of at least 280 operations [1, 2].

The conventional parallel collision search method for computing discrete loga-

rithms on this curve is expected to take approximately 281 operations. Using the

improvements suggested above will reduce this expected running time by a factor ofp
2 � 163 to approximately 277 operations. This is below the required level of security

imposed by the standards. Thus, this curve should not be used if a security level of

280 is desired.

5 E�ciency Considerations

It has been shown that the number of group operations required to perform an

elliptic curve logarithm can be reduced, but this is not much good if too much

added computation is required in each step. In this section we show how to keep

computation low. At each stage of the algorithm we know that the equation Zi =

AiP + BiQ holds. We have at each stage that Ai+1 = ��j(Ai + c) (say) for some

0 � j � d � 1 and some multiplier c. If we represent Ai as Ai = (�1)ui�viwi,

ui 2 f0; 1g, 0 � vi � d � 1, 0 � wi � n � 1, then we can compute wi+1 as

wi+(�1)ui��vic, vi+1 as vi+j, and ui is negated if necessary. The coe�cient Bi can

be tracked similarly. If there is a precomputed table of ��jc for each j = 0; : : : ; d�1

and each multiplier c, then the computation on each step consists of additions or
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subtractions modulo n, additions modulo d and sign changes. This is much cheaper

than an elliptic curve addition and is not a signi�cant part of the algorithm run-time.

We implemented these ideas on the anomalous binary curve E(0;1)(GF (2
41)).

The iteration function used 20 multipliers and used the look-ahead scheme described

in Section 3. Over 15 trials, the experimental run-times were consistent with the

expected run-time of

q
(�=2)241

2�41
.

6 Other Attempts at Using Frobenius

Another way that one might try to take advantage of the Frobenius endomorphism is

to use parallel collision search as usual, but to check whether any stored distinguished

points are negatives of each other or can be mapped to each other with the Frobenius

endomorphism. This is easiest when using a method for choosing distinguished

points which leaves a point distinguished if the Frobenius map is applied.

Unfortunately, this approach will not work unless the iteration function is care-

fully chosen so that all members of one equivalence class map to the same new

equivalence class. The principle behind parallel collision search is that each distin-

guished point stands for the entire set of points in the trail leading to the distin-

guished point. A collision occurs because one trail runs into another trail and is lead

to the common distinguished point. When a collision occurs and is detected, the

two distinguished points are identical. The probability of encountering two unequal

distinguished points which have a Frobenius map and/or negation map is very low.

Another way to think of this is that the iteration function acts as a random

mapping and not all distinguished points are equally likely to appear. In fact,

distinguished points tend to have radically di�erent sized tree structures leading into

them. The conditional probabilities are such that if a distinguished point occurs,

it is very likely to have a large tree structure leading into it, making it a likely

candidate to appear again. However, the distinguished points which are Frobenius

and/or negation maps of the one which has occurred are not likely to have large tree

structures.

7 Conclusion

Sub�eld and anomalous binary curves have been attractive to cryptographers for

quite some time because of the e�ciencies they provide both in curve generation

and in the implementation of cryptographic algorithms. There have also been un-

substantiated warnings for quite some time that these curves may be more open to

attack because of the greater structure that these curves have. The results of this

paper show that this structure can in fact be used to obtain faster attacks. While

the attack presented here still has a fully exponential running time, care should be

exercised when choosing these curves regarding their expected security level. In cer-

tain circumstances these curves may still be attractive because of their e�ciencies

with respect to curves of similar security levels.

These results highlight the fact that more research must be done on the crypt-

analysis of elliptic curve cryptosystems before we can be fully con�dent of the secu-

rity level di�erent curves o�er. Two open questions remain:
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� Can the ideas presented here be used, possibly in combination with other

methods to reduce the attack time further?

� Can similar ideas be applied to other classes of curves or to curves whose

coe�cients do not lie in the sub�eld?
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