Contents:
Having dispensed with polynomials, we can focus on the real arithmetic issue, which is that all the arithmetic performed during CRC calculations is performed in binary with no carries. Often this is called polynomial arithmetic, but as I have declared the rest of this document a polynomial free zone, we'll have to call it CRC arithmetic instead. As this arithmetic is a key part of CRC calculations, we'd better get used to it. Here we go:
Adding two numbers in CRC arithmetic is the same as adding numbers in ordinary binary arithmetic except there is no carry. This means that each pair of corresponding bits determine the corresponding output bit without reference to any other bit positions. For example:
10011011 +11001010 -------- 01010001 --------
There are only four cases for each bit position:
0+0=0 0+1=1 1+0=1 1+1=0 (no carry)
Subtraction is identical:
10011011 -11001010 -------- 01010001 --------
with
0-0=0 0-1=1 (wraparound) 1-0=1 1-1=0
In fact, both addition and subtraction in CRC arithmetic is equivalent to the XOR operation, and the XOR operation is its own inverse. This effectively reduces the operations of the first level of power (addition, subtraction) to a single operation that is its own inverse. This is a very convenient property of the arithmetic.
By collapsing of addition and subtraction, the arithmetic discards any notion of magnitude beyond the power of its highest one bit. While it seems clear that 1010 is greater than 10, it is no longer the case that 1010 can be considered to be greater than 1001. To see this, note that you can get from 1010 to 1001 by both adding and subtracting the same quantity:
1010 = 1010 + 0011 1010 = 1010 - 0011
This makes nonsense of any notion of order.
Having defined addition, we can move to multiplication and division. Multiplication is absolutely straightforward, being the sum of the first number, shifted in accordance with the second number.
1101 x 1011 ---- 1101 1101. 0000.. 1101... ------- 1111111 Note: The sum uses CRC addition -------
Division is a little messier as we need to know when "a number goes into another number". To do this, we invoke the weak definition of magnitude defined earlier: that X is greater than or equal to Y iff the position of the highest 1 bit of X is the same or greater than the position of the highest 1 bit of Y. Here's a fully worked division (nicked from [Tanenbaum81]).
1100001010 _______________ 10011 ) 11010110110000 10011,,.,,.... -----,,.,,.... 10011,.,,.... 10011,.,,.... -----,.,,.... 00001.,,.... 00000.,,.... -----.,,.... 00010,,.... 00000,,.... -----,,.... 00101,.... 00000,.... -----,.... 01011.... 00000.... -----.... 10110... 10011... -----... 01010.. 00000.. -----.. 10100. 10011. -----. 01110 00000 ----- 1110 = Remainder
That's really it. Before proceeding further, however, it's worth our while playing with this arithmetic a bit to get used to it.
We've already played with addition and subtraction, noticing that they are the same thing. Here, though, we should note that in this arithmetic A+0=A and A-0=A. This obvious property is very useful later.
In dealing with CRC multiplication and division, it's worth getting a feel for the concepts of MULTIPLE and DIVISIBLE.
If a number A is a multiple of B then what this means in CRC arithmetic is that it is possible to construct A from zero by XORing in various shifts of B. For example, if A was 0111010110 and B was 11, we could construct A from B as follows:
0111010110 = .......11. + ....11.... + ...11..... .11.......
However, if A is 0111010111, it is not possible to construct it out of various shifts of B (can you see why? - see later) so it is said to be not divisible by B in CRC arithmetic.
Thus we see that CRC arithmetic is primarily about XORing particular values at various shifting offsets.
Having defined CRC arithmetic, we can now frame a CRC calculation as simply a division, because that's all it is! This section fills in the details and gives an example.
To perform a CRC calculation, we need to choose a divisor. In maths marketing speak the divisor is called the "generator polynomial" or simply the "polynomial", and is a key parameter of any CRC algorithm. It would probably be more friendly to call the divisor something else, but the poly talk is so deeply ingrained in the field that it would now be confusing to avoid it. As a compromise, we will refer to the CRC polynomial as the "poly". Just think of this number as a sort of parrot. "Hello poly!"
You can choose any poly and come up with a CRC algorithm. However, some polys are better than others, and so it is wise to stick with the tried an tested ones. A later section addresses this issue.
The width (position of the highest 1 bit) of the poly is very important as it dominates the whole calculation. Typically, widths of 16 or 32 are chosen so as to simplify implementation on modern computers. The width of a poly is the actual bit position of the highest bit. For example, the width of 10011 is 4, not 5. For the purposes of example, we will chose a poly of 10011 (of width W of 4).
Having chosen a poly, we can proceed with the calculation. This is simply a division (in CRC arithmetic) of the message by the poly. The only trick is that W zero bits are appended to the message before the CRC is calculated. Thus we have:
Original message : 1101011011 Poly : 10011 Message after appending W zeros : 11010110110000
Now we simply divide the augmented message by the poly using CRC arithmetic. This is the same division as before:
1100001010 = Quotient (nobody cares about the quotient) _______________ 10011 ) 11010110110000 = Augmented message (1101011011 + 0000) =Poly 10011,,.,,.... -----,,.,,.... 10011,.,,.... 10011,.,,.... -----,.,,.... 00001.,,.... 00000.,,.... -----.,,.... 00010,,.... 00000,,.... -----,,.... 00101,.... 00000,.... -----,.... 01011.... 00000.... -----.... 10110... 10011... -----... 01010.. 00000.. -----.. 10100. 10011. -----. 01110 00000 ----- 1110 = Remainder = THE CHECKSUM!!!!
The division yields a quotient, which we throw away, and a remainder, which is the calculated checksum. This ends the calculation.
Usually, the checksum is then appended to the message and the result transmitted. In this case the transmission would be: 11010110111110.
At the other end, the receiver can do one of two things:
These two options are equivalent. However, in the next section, we will be assuming option b because it is marginally mathematically cleaner.
A summary of the operation of the class of CRC algorithms:
That's all there is to it.
Choosing a poly is somewhat of a black art and the reader is referred to [Tanenbaum81] (p.130-132) which has a very clear discussion of this issue. This section merely aims to put the fear of death into anyone who so much as toys with the idea of making up their own poly. If you don't care about why one poly might be better than another and just want to find out about high-speed implementations, choose one of the arithmetically sound polys listed at the end of this section and skip to the next section.
First note that the transmitted message T is a multiple of the poly. To see this, note that 1) the last W bits of T is the remainder after dividing the augmented (by zeros remember) message by the poly, and 2) addition is the same as subtraction so adding the remainder pushes the value up to the next multiple. Now note that if the transmitted message is corrupted in transmission that we will receive T+E where E is an error vector (and + is CRC addition (i.e. XOR)). Upon receipt of this message, the receiver divides T+E by G. As T mod G is 0, (T+E) mod G = E mod G. Thus, the capacity of the poly we choose to catch particular kinds of errors will be determined by the set of multiples of G, for any corruption E that is a multiple of G will be undetected. Our task then is to find classes of G whose multiples look as little like the kind of line noise (that will be creating the corruptions) as possible. So let's examine the kinds of line noise we can expect.
That concludes the section on the fine art of selecting polys.
Some popular polys are:
16 bits: (16,12,5,0) [X25 standard] (16,15,2,0) ["CRC-16"] 32 bits: (32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) [Ethernet]